More Multiple Regression	
Approaches to Regression Analysis, Types of	
Correlations and Advanced Regression	
Types of Regression Analysis	
Standard Regression	
Standard or Simultaneous Regression	
Put all of the predictors in at one time and the coefficients are calculated for all of them controlling for all others	
Method equals enter in SPSS Sequential	

Forward Sequential

- What does a predictor add to the prediction equation, over and above the variables already in the equation?
- You think the X1 is a more important predictor and your interest in X2 is what does it add to the X1 -> Y prediction
- Real Forward Sequential in SPSS is setting it to Enter and using the blocks function (user specified)

Statistical Forward Sequential

- starts with Y'=a, all potential predictors are assessed and compared to an Entry Criterion; the variable with the lowest F probability (p<.05) enters it into the equation
- Remaining predictors are re-evaluated given the new equation (Y'=a + Xfirst entered) and the next variable with the lowest probability enters, etc...
- This continues until either all of the variables are entered or no other variables meet the entry criterion.
- Once variables enter the equation they remain.
- Method equals Forward in SPSS

Backward Sequential

- Can predictors be removed from an equation without hurting the prediction of Y? In other words, can a prediction equation be simplified?
- You know there are a set of predictors of a certain variable and you want to know if any of them can be removed without weakening the prediction
- In SPSS put all predictors in block one method equals enter, in block 2 any variables you want removed method equals removed, etc...

Ctatistical backward assuration	
Statistical backward sequential	
 All variables entered in and then each are tested against an Exit Criteria; F probability is above a set criteria (p>.10). 	
The variable with the worst probability is then removed.	
 Re-evaluation of remaining variables given the new equation and the next variable with the worst probability is then removed. 	
 This continues until all variables meet the criteria or all variables removed. 	
 In SPSS this is setting method equals backward. 	
Stepwise	
(Purely Statistical Regression)	
 at each step of the analysis variables are tested for both entry and exit criteria. 	
 Starts with intercept only then tests all of the variables to see if any match entry criteria. 	
 Any matches enter the equation 	
 The next step tests un-entered variables for both entry and entered variables for exit criteria, and 	
so on	
Stepwise	
 This cycles through adding and removing variables until none meet the entry or exit criteria 	
Variables can be added or removed over and over given the new state of the equation each time.	
 Considered a very post-hoc type of analysis and 	
is not recommended	

Correlations and Effect size

Ballantine

Regular Correlation (Zero – Order, Pearson)

$$r_{y1}^2 = a + c$$

$$r_{y2}^2 = b + c$$

$$r_{12}^2 = c + d$$

Standard Regression

Partial Correlation

- ocorrelation between Y and X1 with the influence of X2 removed from both
- ○Yres, X1res
- area a/(a + e) for x1 and b/(b + e) for x2 in the ballantine

Semipartial or Part Correlation

- and X1 with the influence of X2 removed from X1 only
- Y, X1res
- area a/(a + b + c + e) for x1 and b/(a + b + c + e)for x2

Semipartials and Bs

- Bs and semipartials are very similar
- B is the amount of change in Y for every unit change in X, while controlling for other Xs on Xi.
- Semipartials are measures of the relationship between Y and Xi controlling for other Xs on Xi.

Sequential

- Assuming x1 enters first
- The partial correlations would be (a + c)/(a + c + e) for x1 and unchanged for x2
- The part correlation would be (a + c)/(a + b + c + e) for x1 and x2 is unchanged.

Advanced Regression	
Moderation, Mediation and Curve	
Estimation	
Centering the data	
 If you want to include powers, Moderation (interactions) or mediation you should first center the data 	
Subtract the mean from every score	
You don't need to standardize by dividing by the SD	
 This helps form creating multicollinearity in the data 	
uala	
Moderation (interaction)	
 Testing for moderation can be accomplished by simply cross multiplying the variables and adding the new variable in as another predictor 	
If A and B are predictors of Y First Center A and B separately (if they don't already	
have a meaningful zero) Multiply the Centered A and B variables to create AB	
Use A, B and AB as predictors of Y If the slope predicting Y from AB is significant than A	
moderates B and vice versa (i.e., there is an interaction)	

Mediation

- Regression can be used to test if a mediating effect is present in the data
- Defined a given variable functions as a mediator to the extent that it accounts for the relation between a predictor and an outcome variable
- Often though of as an indirect effect of one variable on another.
 - OX predicts Y through Z

Mediation

- C is the total effect of X on Y
- A*B is the indirect effect
- C' is the direct effect

Mediation

- 4 steps to establishing mediation (Baron and Kenny/ Regression Method)
 - 1. Establish x predicts y significantly
 - 2. Establish z predicts y significantly
 - 3. Establish x predicts z significantly
 - Establish that x no longer predicts y when both x and z are in the prediction (C' is zero or at least non-significant)
- Partial Mediation steps 1-3 are the same but in step 4 C' is less than C but still significant

Mediation

Baron and Kenny

Mediation

Sobel Method – Indirect Effect

$$Z_{Sobel} = \frac{a*b}{\sqrt{a^2 s_b^2 + b^2 s_a^2}}$$

- Where a and b are the unstandardized regression coefficients for paths a and b
- And s_a and s_b are the standard errors for paths a and b

Powers

- Even though we're talking about linear regression the equations can be altered to account for curves and interactions between variables
- Adding squares, cubes, etc. to account for curves in the relationship
- If you think X can predict an curved Y simply square X and add X² as an additional predictor